
The U*-model

Peter Seymour

15 November 2008

Abstract

This paper outlines the U*-model of computing within the con-

text of the Breathe System. It is presented as a universal model of

computing and several examples are given demonstrating its flex-

ibility. Given its history that predates the Breathe System it can

alternatively be viewed in other contexts as purely universal.

1 History

The U*-model was constructed prior to the Breathe
System (see [?] and [?]) so the parts concerning a
model’s context were specified in general terms. How-
ever, these general terms lead directly to the inter-
faces used in the Breathe System so the definitions
used here for types, register synchronisation and sig-
nals are the formal definition of a model interface.
This paper shows the original universal model as

one of the models that the Breathe System supports.
Originally the domain of computing was viewed as
model-centric but with the advent of the Breathe Sys-
tem the focus has changed to the structure of the en-
vironment with models being interchangeable compo-
nents. Since the text of the following sections has not
be greatly altered it should be read with this mind.
For instance the notation used reflects the original
notation which has since been superceded within the
Breathe System.

2 Introduction

The purpose of the U*-model is to effectively describe
a very large class of computing systems. Several ex-
amples are given that show how universal this model
really is. The aim is to provide a working model in
which old and future computing systems can co-exist.

This covers software, hardware and abstract models.
By describing all of these in common terms permits
this to happen.
The basis of the U*-model centres around types,

stacks and registers. A type is simply a name given
to a set of states which any instance of it can take.
The states are ordered as a cycle with an initial state
chosen. A stack represents a finite ordered collection
of type instances with access only to the top most
elements. The set of stacks is enumerated. Registers
correspond to individual type instances but allow the
states to be manipulated through register machine
instructions.
The U*-model executes a series of operations on

the stacks moving and combining their elements or
acting on the states. Communication with the wider
Breathe System is achieved by synchronising some of
the registers with device registers.

3 The U*-model

Technically the U*-model is a family of models since
the set of types and number of stacks are parameters.
However, in this text the term model refers to any
member of the family i.e. the set of types and number
of stacks are fixed. A model instance is then the
specific operations and instructions performed when
executing, it is analogous to a software program.

1 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



3.1 Types

There are a finite number of primitive types coming in
two varieties: built-in and user-defined. The built-in
types are pointer, deconstruct, valueof, clone, action,
break, reverse-swap and null or in symbols &, * ,$,
%, @, !, S, -, respectively. I refer to the user-defined
types as u1, . . . , uk and these are parameters in the
U*-model family. An element of type t can take on
one of |t| > 0 states which in turn is associated with
an element of N|t| and yields an ordering to the type
instances. This ordering is required by the register
machine. |t| is the size of t. With the exception of
pointer the built-in types have size 1 which is referred
to as being a tag type. The user types and pointer

type can have any finite size. Again these sizes are
parameters in the U*-model.

The main class of type constructors is arrayn or
[]n: t1, . . . , tn → [t1, . . . , tn] which allows n ≥ 0
(but finite) heterogeneous elements to be ordered
where tk is any type. The second is structuren or
{}n : ui1 , . . . , uin → {ui1 , . . . , uin} that defines a new
type from a finite set of other types (user-defined or
built-in). A structure type is atomic and its type is
immutable hence it will be treated like a user type ui

for some i. Two structures are of the same type if and
only if they correspond to the same user type. Hence
structures use name equivalence. An array type can
be altered so will always be written [t1, . . . , tk]. Two
array types [t1, . . . , tk] and [t′

1
, . . . , t′

k′ ] are the same
if and only if k = k′ and ti = t′

i
for each i. Hence

arrays use structural equivalence.

These are recursive definitions but the closure of
all the types produced is the countably infinite set of
available types, T .

The notation used for types is of the form x:t for
an instance x of type t. If t has size 1 it may be
written as :t. Examples are 10:&, :* and 21:int

for a user type int.

Since a type of size n can be thought of as the
first n ordinals it is declared as t=n. A more realistic
example including structures is:

year=10000

month=12

day=31

date={year,month,day}

hour=12

minute=60

second=60

time={hour,minute,second}

datetime={date,time}

With example instances of {11,5,0}:time and
{{2006,08,15},{18,06,15}}:datetime.

3.2 Stacks

A stack is initially empty and since it is unbounded
will never overflow. Under various conditions ele-
ments are popped from the stack which may cause
an underflow. In this case the model instance termi-
nates in error. The number of stacks appearing in
a given U*-model is equal to the size of the pointer

type. Therefore each stack corresponds to a state of
the pointer type which enumerates them.

3.3 Push and Op

There are two manipulations that can be performed
on a stack. The first is to push an element on to the
top.

s <- 21:int

s <- t

s <- :*

s <- [ :add, 1:int, 2:int ]

As shown above where s and t are stacks and the
use of a stack on the right hand side denotes a pointer

to it.
The second very important operation is simply

called op.

s()

It treats the top element as a functional taking
none, the first or both of the next two elements as
arguments. The top element and the arguments as
required are removed, the operation performed and
the results if any pushed back. It is necessary to

2 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



define it this precisely as the op’d stack might be
referenced directly or indirectly. The nature of all the
behaviours is broken down by the top element and the
next element is understood to be the argument.

pointer: The argument is pushed on to the stack
pointed to by the pointer and does not return
an element.

deconstruct: For an argument of type pointer the top
element of the pointed to stack is removed and
nothing returned. For an argument of type array
each element of the array is returned back to the
stack from right to left so that the top element is
the first element of the old array. For any other
type nothing is returned.

valueof: For an argument of type pointer a copy of the
top element of the pointed to stack is returned.
For all other types the argument is returned.

clone: Two copies of the argument are returned.

action: The argument is subjected to the function @
and the result returned. This delegates to the
register machine and is explained later.

break: This does not take an argument nor return a
result. It increments the break counter.

reverse-swap: Two arguments are taken and noth-
ing returned. If exactly one argument is of type
pointer then the pointed to stack is cleared and
the other argument pushed onto it. If both ar-
guments are of type pointer then the pointed to
stacks have their contents swapped in reverse or-
der. Namely the top element of each stack now
appears as the last element on the other stack.
In the case that both arguments point to the
same stack then its contents are reversed. In all
other cases nothing happens.

null and uk: An argument is taken but nothing re-
turned.

array: The argument is appended to the right of the
array element which is then returned.

Only break does not take an argument and it could
take a dummy value, however, it complicates descrip-
tions without any gain. The list could be shorter in
that clone is redundant.

t <- s

t <- :$

t()

t <- s

t()

This is equivalent to cloning the top element of s.
It is significant that s appears nowhere on the left
since this fragment would not work on a dynamically
determined stack. More on this later as we see that
only a fixed set of stacks is needed to perform arbi-
trary manipulations on all available stacks.

3.4 Routines

A routine is a named sequence of push and op instruc-
tions over a fixed set of stacks.

3.5 Actions

There is a partial function @ mapping elements from
the set of types to itself. By default @ is defined
nowhere but definitions can be supplied on a type by
type basis. When the action operation is performed
@ is applied to the argument. If @ is not defined
for the type of the given argument then the model
instance halts in error. A definition is specified using
the form x → y where x and y are elements with
non-structural primitives named in the case they are
not tags. For example:

[ :add, x:int, y:int ] -> r:int

[ :get_hours, {h,m,s}:time ] -> hh:hour

Each action comprises a sequence of optionally la-
belled instructions on the registers which are the
named primitives in the argument and result. In the
first example these are x, y and r whereas in the
second they would be h, m, s and hh. Two of the
instructions are from a modified register machine.

l: r’ -> r

3 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



This changes the state of r to the next state in
some fixed enumeration. It is labelled l and will con-
tinue to the next instruction unless it is the last. If r
was previously in the final state it is changed to the
first state which is special and denoted by 0. All the
registers corresponding to primitives in the result are
initially in state 0. The analogy here is addition by 1
modulo the size of the type which is carried over by
the notation |r|.
A traditional register machine would also provide a

decrement instruction with a test to prevent the reg-
ister value dropping below zero. This is not necessary
since |r| − 1 ≥ 0 applications of r’ -> r achieves a
decrement.
A test is still needed to provide conditional be-

haviour and is written:

l: r = 0 ? l1 : l2

The register machine will next execute the instruc-
tion labelled l1 if r is in its first state otherwise the
instruction labelled l2 will be executed.
When the point of execution reaches the end of the

instructions the action terminates. A label may be
supplied after all the instructions to allow an early
exit.
An example that resets a register to its first state

would look like:

continue:

r’ -> r

r = 0 ? exit : continue

exit:

Notice how this makes no assumptions about |r|
and forms a generic solution which will apply across
all types.

3.6 Persistent and external registers

A register or structure of registers in the case of a
structural type may be declared. These can be ref-
erenced by any action and maintain persistent state
across action applications. Initially all the primitive
registers are in state 0. A reasonable use might be
to store the last time an event occurred or generate
a temporary register for some calculation:

{last_h,last_m,last_s}:time

temp:int

Any of these registers can be bound to identical
external registers that fall outside of the U*-model.
Within the context of the Breathe System these are
held by devices. It is assumed these external copies
are monitored or updated by some process indepen-
dently such as a device. An action may synchronise

the internal copy in either direction depending on
how it is declared.

"char_out" <- char_out:character

"char_in" -> char_in:character

This says that char_out can be synchronised-out

while char_in can be synchronised-in. If it is re-
quired that synchronisation occur both ways then a
double headed arrow is used.
In an action, the following instructions:

? <- char_out

will copy the state of the internal register to the
external copy whereas:

? -> char_in

will copy the state of the external register to the
internal copy. The question mark representing the
external register. The naming indicates that some
external process will monitor char_out and perhaps
display a character. In the case of char_in it could
be updated by some input source. The use of quotes
intentionally highlights that it lies outside the U*-
model and a meaning only makes sense in context. It
is not permitted to synchronise a register in a direc-
tion it is not declared for.
For a structural type say,

"today" -> {y,m,d}:date as today

an overall name is needed to express the synchro-

nisation of the whole structure. That would be done
by:

? -> today

4 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



3.7 Signals and Interrupts

Routines are processed from top to bottom with no
ability for an alternative control flow. Signals by con-
trast are composed from routines and allow some de-
gree of flow control. A signal is in essence a pro-
duction over the routines and signals. These are ex-
pressed in a restricted BNF notation. Suppose there
are two routines R1 and R2 then they can be chained
together in a signal S:

<S> ::= R1 R2

This signal itself can be used from another signal

T by:

<T> ::= R1 <S>

T will then process the instructions in R1 followed
by R1 (again) and then R2. A definition can be re-
cursive.

<T> ::= R1 <T> R2

At points of recursion the break counter is referred
to. If no breaks have been issued the recursion will
occur. If the break counter is positive then it is de-
creased by 1 and the next element from the produc-
tion processed or the parent production consulted in
the case of tail recursion. Initially the break counter
is 0. In effect the productions determine a cyclic
graph with the nodes being the routines. A point
of recursion is identified by an edge leading back to
a previously seen node. Multiple breaks may be is-
sued before a point of recursion so it is possible to
exit cycles from any level. When the last routine of
the initial production is processed the model instance
halts. Processing begins at an initially chosen signal.
The signals do not necessarily have to form a con-

nected graph meaning there are multiple ways to start
the model instance. Therefore one model instance
may be used in a variety of ways.
There is a special signal that processes interrupts.

When this signal is encountered in a production the
model instance yields and an undetermined but finite
sequence of signals is substituted in place by an out-

side process e.g. Breathe devices. The substitution
can vary from one occurrence to another. It is as if

the model instance has allowed itself to be interrupted
and perform some signals it does not directly control.
In a production this is written using a question mark:

<T> ::= R1 ? <T>

So after each time R1 is processed the model in-
stance yields and processes zero or more other signals.
A question mark is used as it was for an external reg-
ister to highlight the two areas reliant on external
context. It is worth noting that a U*-model explic-
itly exposes itself to its context and can chose not to
or to what degree it does. An external process can
never interfere with a model instance in a previously
not requested manner.

4 Examples

This section sketches out the basics of using the U*-
model to describe some example machines, runtimes
and programs. Each one is quite distinct and gives a
good indication of the capabilities available. For ac-
tual use they would need to be extended, for instance
none of them deal with input or output but adding
suitable Breathe devices would be easy, see [?]. This
and other extended functionality would most likely
be added by including various actions, however, cre-
ating a large list here does nothing to aid readability.

4.1 A Turing Machine

A Turing machine is an abstract computing device
created by Alan Turing primarily to explore the limits
of computation [?]. It comprises an infinite tape of
symbols and a head that can move over the tape one
step at a time reading and writing symbols. The
process is driven by internal state changes referring
to a finite set of deterministic rules. This description
of a Turing machine uses three stacks to represent the
tape. One holds the cell under the head and the other
two hold the cells to the left and the right. Moving
the head involves transferring cells from left to right
via the head or vice-versa. Two additional stacks are
used to hold the current state and direction. These
are declared as follow:

5 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



left

head

right

state

direction

Each state and direction will be denoted by a tag

type. In the case of direction these are:

L = 1

R = 1

HALT = 1

The states will be specific to a given problem so an
example set will be shown later.
To move the head requires shifting elements from

the left and right stacks via the head stack. Since
both of these stacks are finite but are being used to
represent half of an infinite tape each means null ele-
ments must be inserted to avoid running off the end.
The end of the tape is marked by [:-] such that a
sequence of operations will insert a null element when
it is present but will leave tag types unaltered.
The full routine to move the head to the right re-

quires the following sequence of instructions namely
go right:

right <- :% /extend

right()

right <- :*

right()

head <- left /shift

head()

right <- head

right()

In the first block the element to the right is cloned
and then deconstructed. For a tag type this has no
overall effect but for the marker it leaves a copy of
:- behind. In the second block the first pair of in-
structions take the top element on head and pushes
it onto left. The final pair move the top element of
right onto head.
Similarly for go left:

left <- :% /extend

left()

left <- :*

left()

head <- right /shift

head()

left <- head

left()

The premise is to first process all Turing instruc-
tions that move the head to the right. When a direc-
tion change is encountered this loop is broken and all
instructions moving left are processed.
To react to direction changes the following four ac-

tions are used. They have no associated instructions
since this runtime only uses type information. By us-
ing op on the resulting type a break will be issued if
the directions differ otherwise nothing happens.

[:L, :R] -> :!

[:R, :L] -> :!

[:L, :L] -> :$

[:R, :R] -> :$

There are no actions using the HALT type so when
this is encountered the model instance terminates.
Each Turing instruction is represented by an ac-

tion. The current state and cell value is mapped to
the next state, new cell value and direction for the
head to move. Since Turing states and directions are
types no instance values are considered. A Turing
instruction has the form:

[:s, :c] -> [:ss, :dd, :cc]

Here s is the current Turing state and c the cell
value under the head. On the right ss is the new
Turing state, cc the cell value to be written and dd

the direction to move the head. These are processed
by the compute routine:

state <- head /move the state

state()

head <- [] /combine state and cell

head()

head()

6 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



head <- :@ /process the Turing

head() /instruction

head <- :* /unpack

head()

head <- state /save state

head()

direction <- head /copy new direction

direction <- :$

direction()

direction <- [] /make transition array

direction()

direction()

direction <- :@ /process

direction()

direction()

head <- direction /save direction

head()

First the state is moved to the head stack. It is
then combined with the current cell to form an ar-

ray. The @ function is applied yielding the right hand
side of a Turing instruction. This composite result is
deconstructed. The new state is moved to the state

stack. The new direction copied onto the direction
stack. Note the old direction sits below it whereas
the state has been replaced. These two directions are
combined into an array. The @ function is again ap-
plied. The resulting element is op’d possibly issuing
a break. The new direction is then moved from head

to direction.
Now finally all this comes together with a few sig-

nals:

<r_cycle> ::= go_right compute <r_cycle>

<l_cycle> ::= go_left compute <l_cycle>

<cycle> ::= <r_cycle> <l_cycle> <cycle>

<start> ::= prepare load <cycle>

The start signal first processes a routine called

load that will configure the initial tape contents and
puts the Turing machine into its initial state. The
routine prepare assigns the initial direction that the
head will move:

direction <- :R /initial direction

head <- :-

left <- [:-] /end markers

right <- [:-]

Then <r cycle> and <l cycle> will be processed
indefinitely unless the Turing machine halts. Each
one in turn moving the head and computing a Turing
instruction. The model instance terminates when a
Turing instruction returns a direction of HALT and
unsuccessfully attempts to find an action.
A concrete example of unary addition can now be

easily described. The tape contains either blank cells
represented by null elements or marked cells using a
tag type mark. The Turing states are S1, S2 and S3.
The load routine for 2 + 1 is:

right <- :mark

right <- :-

right <- :mark

right <- :mark

state <- :S1

Initially the head begins one to the left of the first
marked cell. The Turing instructions are:

[:S1, :-] -> [:S1, :R, :-]

[:S1, :mark] -> [:S2, :R, :-]

[:S2, :-] -> [:S3, :R, :mark]

[:S2, :mark] -> [:S2, :R, :mark]

[:S3, :-] -> [:S3, :HALT, :-]

[:S3, :mark] -> [:S3, :R, :mark]

This is a pleasing description of a Turing machine
since each component is represented cleanly and with
minimal syntax. Indeed it wouldn’t look out of place
as an abstract description in its own right.
The signals and routines can be considered a run-

time for the domain of Turing machines. While the

7 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



direction actions and types are analogous to a hard-
ware CPU and form a machine. The remaining ac-

tions corresponding to the Turing instructions and
the load routine form an instance of a program.

4.2 Whirlwind I

The Whirlwind computers were developed in the late
1940s with the aim of obtaining high speed comput-
ing with a simplified instruction set. The instructions
were known as orders. By restricting the orders avail-
able they could be encoded as numerical values in a
uniform way and stored in main memory with other
data. This example is based on the R-127 report from
1947 [?] but no claim is made that it is a faithful rep-
resentation. Indeed it differs in one key aspect: This
representation encodes orders as a type different from
numeric values so the storage registers don’t always
contain values. More about this is mentioned at the
end. It does, however, make for an elegant represen-
tation of the basic ideas of the Whirlwind I system
(WWI).
WWI had 2048 storage registers that were the main

memory of the system. All processing was done via
the arithmetic element using a small number of in-
ternal registers. These are the accumulator (AC),
two arithmetic registers (AR and BR) along with a
program counter (PC). Numerical values were 16-bit
binary numbers using 9’s complement where the con-
version between sign only requires flipping each bit.
This suggests a type:

value=65536

Then the storage registers as stacks:

S[2048]

On the register machine side there are four registers
representing the internal registers of the arithmetic
element:

AC:value

AR:value

BR:value

PC:value

An action is used to retrieve the location of the
next order where pc is a tag type and the value of p
will equal the value of PC upon completion:

:pc -> p:&

The first seven orders all have the same represen-
tation and invoke an action to alter the internal reg-
isters. Each action with the exception of one incre-
ments PC as its last change. This advances the point
of execution to the next order. For instance ca S(x)

will clear AC and add the contents of the storage reg-
ister numbered x. PC is then incremented. By taking
a tag type ca the following action is formed that will
perform the necessary changes to the internal regis-
ters:

[v:value, :ca] -> [:$]

Here v is the value on top of S[x] with the order
encoded as:

[:$, S[x], :ca]

The other orders handled this way are:

ad x which adds the contents of x to AC.

cs x which clears AC and subtracts the contents
of x.

su x which subtracts the contents of x from AC.

mr x which transfers AC to BR and forms the
two-register product of AC and S(x). The most
significant 16 bits go into AC and are rounded
according to the lower 16 bits.

mh x which transfers AC to BR and forms the
two-register product of AC and S(x). The most
significant 16 bits go into AC and the lower 16
bits into BR.

dv x which transfers AC to BR and forms the
quotient of BR and S(x) in BR.

The two orders sl n and sr n perform a bit shift
of the 32-bit value formed by taking AC as the most
significant bits and BR the lower then moving it n

bits left or right respectively. These are represented
by:

8 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



[:$, n:value, :sl]

[:$, n:value, :sr]

At this point it makes sense to look at the main
processing routine which uses an evaluation stack
eval.

eval <- :pc /get address of next order

eval <- :@

eval()

eval <- :$ /retrieve order copy

eval()

eval <- :* /unpack

eval()

eval() /pre-compute

eval <- [] /compute

eval()

eval()

eval <- :@

eval()

eval <- :* /post-compute

eval()

eval()

Running through this block by block. The loca-
tion of the next order is found. The order copied
over to the evaluation stack. As it’s an array it is
deconstructed. The pre-compute phase is achieved by
performing an op on the top two elements. The now
top two elements are placed in an array. The func-
tion @ applied. The resulting array is deconstructed.
An op is then performed as the post-compute phase.
There need only be one signal that repeats this

routine indefinitely. To halt the system an order can
be encoded:

[:$, :ht, :-]

With an action on ht that will allow a break to be
issued in the post-compute phase:

[:ht, :-] -> [:!]

Returning in detail to ca. The pre-compute phase
is :$ on S[x] bringing in the value from S(x). The
compute phase will apply @ to [v:value, :ad]

yielding [:$]. In the post-compute phase this array
is deconstructed and the following op simply removes
the :$.
The shift orders work the same except that :$ will

have no effect on n:value in the pre-compute phase.
The order ts S(x) transfers the value in AC to

S(x). The encoding for this is:

[:*, S[x], :ts, S[x]]

In the pre-compute phase the old value at S[x] is
removed. The action used will return a more compli-
cated element than before:

[:ts, x:&] -> [x1:&, v:value]

The contents of AC are put into v and x1 made
equal to x. In the post-compute phase this acts like
a closure and pushes v onto x1.
To achieve control flow sp x loads the program

counter with x so that the next instruction is read
from S(x). For conditional control flow cp x does
the same but only if AC > 0. To effect the change of
PC one of two actions are used:

[:sp, x:&] -> [:$]

[:cp, x:&] -> [:$]

In these sp and cp are tag types. The first action
puts x into PC but no increment is performed. The
second does so only if AC > 0 otherwise it increments
PC as per usual.
The encoding of the orders is then:

[:$, :sp, x:&]

[:$, :cp, x:&]

This completes the basic operations of WWI, how-
ever, one is missing. The original design had an order
td S(x) that would replace the top 11 bits at S(x)
with those in AC. These 11 bits were the address part
of the instructions (11 bits allows all 2048 storage reg-
isters to be accessed). As pointed out above this is

9 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



not as such possible in this representation since the
data values are of a different type than the orders.
There is an approximation though that would most
likely give enough functionality to compute the in-
tended programs of the system. By adding not one
order but an order for each of the other orders an
update of not only the storage register but the order
type itself could be made. For instance to replace the
order or value in storage register S(x) by the order
ca S(AC) would require the use of tdca S(x). Here
S(AC) denotes the storage register referred to by the
top 11 bits of AC. This can be encoded by:

[:*, x:&, :tdca, x:&]

The action that is used in the compute phase is:

[:tdca, x:&] -> [x1:&, [:$, y:&, :ca]]

Setting x1 equal to x and y equal to the top 11 bits
of AC. Essentially a closure has been returned that
will place onto S[x] the encoded order [:$, S(AC),

:ca]. A similar scheme can be followed for the other
orders. A further extension is to include these new
orders in the scheme with tdtdca for instance but it
has to stop somewhere.
An alternate representation could have been given

that would take an arbitrary value and treat is as an
order. By using an action that selects its return ac-
cording to the order code section the order is carried
out. However, the return type of this action would
need to be sufficiently general to capture all the pos-
sible operations. It would require a stage to transfer
a value from a storage register, a stage to clear a
storage register etc. Any one of these stages might
do nothing of course. This is more along the lines of
a general microprogramming solution but loses all of
the elegance of the representation just presented. It
seems unnecessary to go this far to capture enough
functionality to do useful calculations. In fact tdca
is able to change the type of order which was not
accounted for in the original system.
This lack of completeness is not a symptom of

weakness in the U*-model but rather the product of
applying strong typing rules where there were previ-
ously none. It will always be the case that forcing an
un-typed system to be typed will present problems.

4.3 Assembler and Microcode

This example displays a general way of modelling a
very primitive assembly language. There are many
variations that could be made and it could be ex-
tended quite considerably. At its heart is the idea of
building each instruction from those available in the
U*-model. In this sense the operations that the U*-
model supports become the microinstructions. This
was seen in the Whirlwind example to some extent
but due to the simplistic nature of the orders a spe-
cific encoding could be used. In those encodings the
three phases for each order were preset. In a gen-
eral assembler though there will be a wider variation
in the phases required. It might be necessary to do
multiple fetches of operands or even some amount of
preprocessing. These phases are controlled by a se-
quence of microinstructions just as a real CPU might
do. From the assembler instruction the relevant se-
quence of microinstructions is formed by applying @.
The target machine (either real or virtual) will only

have a few primitive types normally along the lines of
variously sized integers and floating point numbers.
For clarity this example just deals with a single word
type that has size equal to that of the pointer type.
Memory is then the set of stacks and words are able
to hold addresses.
A common operation required by some instructions

is the need to convert between the word type and the
pointer type. The following actions achieve this.

p:& -> w:word

w:word -> p:&

As with the other examples I leave the details of
the action definitions until a better notation is intro-
duced. Suffice to say these ones do a straight assign-
ment noting that both types have the same size.
Each assembler instruction will reside as the top

element of its own stack. Its representation is that of
an array whose first elements is a tag type denoting
the instruction followed by all its operands. These
operands might be references to memory and hence
a pointer or could be immediate values of type word.
For instance:

[:add, x, y]

10 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



[:mov, x, 21:word]

[jmp, l]

Each of x, y and l are names of stacks designated
as significant for some reason.
Control passes ordinarily from one instruction to

the next except where a branch is encountered. The
current point of execution is held as a pointer in a spe-
cially designated stack pc which is short for program
counter. In order to move to the next instruction
there is an advance action.

[:adv, p:&] -> q:&

Where adv is a tag type and q equals the state
following p.
To execute an assembler instruction a copy of it

is first fetched onto a pipeline stack by the routine

fetch. This in turn applies @ to get the array of
microinstructions which will subsequently be decon-

structed.

pipeline <- [:!] /push tail break

pipeline <- pc /copy address in pc

pipeline <- :$

pipeline()

pipeline <- :$ /copy instruction

pipeline()

pipeline <- :@ /create microinstructions

pipeline()

pipeline <- :* /unpack

pipeline()

The microinstructions themselves are also repre-
sented as an array of elements. To process a microin-
struction the runtime deconstructs the array and ops

the resulting elements. This is a very flexible scheme
allowing new elements to be introduced to an eval-
uation stack when required. It also allows existing
elements to be combined by means of the an empty
array. Notice that the fetch routine first pushes a
break onto the pipeline stack. This allows the run-
time to detect the end of the microinstructions and
move to the next assembler instruction.

Each microinstruction is processed by the step

routine on an evaluation stack eval.

pipeline <- eval /microinstruction to eval

pipeline()

eval <- :* /unpack

eval()

eval() /compute

Elements are moved from pipeline rather than
taking a copy as in fetch. The adv routine increases
the program counter.

pc <- [:adv]

pc()

pc <- :@

pc()

Finally putting all this together are a handful of
signals.

<cycle> ::= step <cycle>

<process> ::= fetch <cycle> adv <process>

<start> ::= load <process>

After loading the code and setting pc to point to
the first instruction a loop commences. This fetches
an assembler instruction and decodes it into the cor-
responding sequence of microinstructions. By means
of <cycle> each one is processed until [:!] is found.
This breaks <cycle> at which point the program
counter is increased.
A sequence of microinstruction may need to invoke

more actions to achieve its overall goal. So for in-
stance at the heart of an addition instruction there
needs to be an action to do the arithmetic. It would
be possible to reuse the tag type for both the assem-
bler instruction and the microinstruction but to aid
readability the microinstruction version will be pre-
fixed by m. Using addition as a starting point two
actions are constructed:

[:madd, x:word, y:word] -> r:word

11 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



Naturally r will be the sum of x and y. A simi-
lar construction can be used for any unary or binary
operator.

[:add, x:&, y:&] -> [[:$,x1:&], [:$,y1:&],

[[:madd]], [], [:@], [:*,x2:&], [x3:&]]

Here x, x1, x2 and x3 are to be equal. Similarly for
y and y1. The sequence of microinstructions roughly
translates as: fetch x, fetch y, load the instruction
and bind to the first operand, bind to the second
operand, compute, clear the target stack and finally
store.
To perform conditional control flow a comparison

operator can be introduced. The result of this com-
parison will be held in flags. These flags will be part
of the register machine and have a two state type.
Supposing only a strict less than operator is required
there can be a flag:

less:boolean

Where boolean is a type of size 2. It will be set or
cleared after performing the action:

[:mcmp, x:word, y:word] -> :-

Ideally all instructions can affect flags so each ac-

tion corresponding to an assembler instruction is able
to alter them.
Now it is possible to perform a conditional jump:

[:mjl, p:&, q:&] -> pp:&

This is slightly more involved. If less is set then
pp should equal the state previous to p otherwise to
q (which will be the current value on pc). The reason
being that adv will be processed regardless of the out-
come at this stage. The decoding to a corresponding
microinstruction sequence will be a similar scheme as
for add and is shown later.
Where an immediate operand, w, is needed the mi-

croinstruction to load it will be:

[:$, w:word]

Loading a stack address is a little more complicated
and can be done more than one way:

[:*, [s]]

[:-, :-, s]

The model thus presented makes no use so far of
registers in the traditional assembler sense. There is
in fact no need to distinguish between registers and
memory since either will be held in stacks. They can
of course be introduced as specially named stacks but
to keep this example simple none are now given. An
alternative model may keep a fixed set of registers in
actual registers of the register machine but that is a
bigger change.
By influence of the Z80 architecture [?] a few in-

structions can be mapped relatively simply to an ar-

ray of microinstructions. Consider ld a,b that takes
the value in b and puts it into a where either can be
memory locations or registers. This will be formed
for stacks a and b by:

[[:$,b], [a]]

If b is an immediate value it becomes:

[[:$,b:word], [a]]

Indirect memory access would be expressed by ld

a,(b) where the indirection occurs through b.

[[:$,b], [:@], [:$], [a]]

The use of the action taking a word element to a
corresponding pointer is critical.
Storage the other way ld (a),b works by:

[[:$,b], [:$,a], [:@], []]

Again the reverse action is important here and []

demonstrates using existing elements on eval.
Instructions such as add a,b and cmp a,b have

been explained.
Finally for conditional behaviour jmp l and jl l:

[[:*,pc], [pc,l]]

[[:$,pc], [[:mjl,l]], [:@], [:*,pc], [pc]]

Here the label l is the address of a stack containing
the target instruction and pc will be passed along
with instruction. The unconditional jump removes

12 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



the old program counter value and replaces it. The
conditional jump uses mjl to select between l and
the contents of pc
Many of the ideas in this example have conse-

quences beyond assembler. For any high-level lan-
guage a set of microinstructions can be formed and
the above runtime still works. Since stacks can hold
any type there is no reason not to take primitive
elements beyond simple numeric types. The intro-
duction of microinstructions does seem to introduce
a significant amount of fetching and storing. Much
of this will be rendered unnecessary as consecutive
instructions fetch previously stored results. By in-
troducing higher-level instructions this can in part
be avoided. Another option is to directly translate
a source language to microinstructions. These can
be further optimised to avoid any duplication. The
problem is in no way specific to this model though.
In conceptual terms of machines a clear distinction

can be seen for this representation. The routines and
signals compose something like the core of a CPU in
traditional hardware. It goes through various stages
of fetching and processing instructions. The actions

corresponding to microinstructions such as for madd
are akin to operations in the CPU or ALU. There
is a definite machine concept incorporating the un-
derlying word type and instruction set. An actual
program would be loaded by some routine.

4.4 The ACF Runtime

ACF stands for atomic coroutine fragments and is a
scheme of runtimes rather than a particular formula-
tion. Its principal aim is to decompose a computation
into blocks such that each block is always processed
in its entirety. Each block will take the now famil-
iar form of an array of instructions. The type of in-
structions may resemble microinstructions or could
be encoded instructions or something completely dif-
ferent. The choice only affects the part of the runtime
that processes these individual instructions and is left
open.
Rather than expressing the computation as a se-

ries of assembler like instructions laid out in memory
each block is linked to other blocks forming a con-
trol flow graph. Coroutines maybe broken down into

such blocks with their multiple entry and exit points
becoming block ends. For instance a loop may have
a prefix block to set up some variants then move to a
test block. This test block goes to either the body of
the loop or the next block depending on the result of
the test. The body of the loop will be a block (or a
subgraph of blocks) that links back to the test block.

Prefix

Test

Suffix

Body

Figure 1: Control flow for a loop

This block processing can be achieved by process-
ing instructions on an evaluation stack in sequence
until an instruction issues a break. One more in-
struction is then processed than will dictate the con-
trol flow namely which block to fetch next. It does
this by leaving a pointer to a block on a stack called
pipeline. Initially pipeline will contain a pointer

to the first block to process. The next block is fetched
and processed in the same manner. This process re-
peats until the extra instruction controlling flow is-
sues a break and the whole model terminates.
The fetch routine is somewhat familiar:

pipeline <- :$ /copy

pipeline()

pipeline <- :* /unpack

pipeline()

The step routine can take many forms as noted
but one of the simplest would be:

pipeline <- eval /move

pipeline()

eval <- :* /unpack

13 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



eval()

eval() /compute

It is possible to make the final instruction split into
two parts. The first part issues the break during step
and the remaining part will be left on the evaluation
stack. To process this final part the branch routine

only has to perform an op:

eval()

Tying these up are the signals:

<step> ::= step <step>

<cycle> ::= fetch <step> branch ? <cycle>

<execute> ::= load <cycle>

As interrupts have not appeared in the previous
examples they are included here. They could have
be located in <step> but it may well prove useful
to guarantee no external influences during the pro-
cessing of a block. This is the true nature of ACF
that these blocks are atomic and once started will be
finished.
Conditional instructions follow a few distinct pat-

terns. To terminate the model instance [:!,

:!] will suffice. To branch unconditionally [:!,

pipeline, l] will load the pipeline with a pointer

to some stack labelled l. The result of some poten-
tially complex computation may remain on the evalu-
ation as a pointer to the next block. In this case [:!,
pipeline] will assign it to pipeline. Consider an
action:

[:select, l1:&, l2:&, ..., n:nat] -> l:&

As usual select is a tag type and corresponds to
a function able to select the n’th labelled stack from
a fixed list. Further more complicated actions could
be devised for a multitude of different concepts.
The power of the scheme comes through being able

to add in higher level instructions than in the previ-
ous examples. Direct facets of a programming lan-
guage can be modelled by adding actions. For in-
stance an easy way to implement a switch statement
in C would use the label selection above. Also by

grouping a program into blocks of instructions with-
out any constraint on those instructions means a
compiler can perform its normal optimisations and
transformations. The problem of refetching previ-
ously stored data can be solved by optimally folding
and rearranging instructions within a block. Given
the atomic nature of these blocks a compiler has a
good degree of freedom in the transformations it can
apply. In a concurrent system this would be impor-
tant since a context switch could not occur within a
block. However, each block is finite so will always
yield to the interrupt mechanism ensuring no dead
locks. These concepts are explored in the next exam-
ple.

4.5 Concurrency

Despite the system only allowing a single path of exe-
cution in terms of state changes it is possible to sim-
ulate concurrent processes. This concept has been
successfully implemented at Ericsson with their lan-
guange Erlang [?]. Using the ACF runtime as a base
the aim is to interleave the execution of each frag-
ment. This works since each fragment necessarily
takes only a finite number of steps to complete so
blocking cannot possibly occur. In this sense it is
wait-free. Every process will require its own copy of
an eval stack and a pointer to the next fragment.
These must be preserved when a process switch oc-
curs but can be combined onto a single stack for stor-
age. A circular buffer of process descriptors is main-
tained using three stacks processed, pending and
current. Each descriptor is an instruction to swap
in the relevant stack or is a terminator descriptor
that contains a break. When pending is empty it is
swapped with processed.
The advance routine takes the next pending pro-

cess descriptor and places it on to processed. It
also leaves two copies on current. The first is used
to swap the state in and the second to swap it out
again.

pending <- current

pending()

processed <- current

14 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



processed <- :$

processed()

current <- :% /make second copy

current()

The swap routine unpacks the descriptor and exe-
cutes the swap (or break).

current <- :* /unpack

current()

current() /perform swap

In order to reset the circular buffer a routine

can perform a reverse-swap on the processed and
pending stacks. This takes advantage of the revers-
ing nature of the operation to retain the original or-
der. The reset routine is then:

current <- :- /remove copy

current()

current <- processed

current <- pending

current <- :S

current() /swap

Finally there are two routines to extract the frag-
ment address from the per-process stack and its in-
verse to put it back.
The routine unpack:

eval <- pipeline

eval()

The routine pack:

pipeline <- eval

pipeline()

Adopting a similar notation to the standard ACF
runtime leads to the following signals.

<work> ::= fetch <step> branch

<stay> ::= unpack <work> pack

<cycle> ::= <stay> swap advance

swap <cycle>

<round> ::= advance swap <cycle>

reset <round>

<execute> ::= load <round>

The load signal must ensure that pending is con-
figured with a list of process descriptors and a final
terminator. Each descriptor indicates a process stack
which must contain a pointer to its first fragment on
top. For example:

evalA <- intial_fragment

pending <- [:!]

pending <- [:S, eval, evalA]

There are some interesting consequences of this
model. Any process may make a fixed number of al-
terations to the process list by operating on pending

and processed. For example adding some new pro-
cesses to either side of itself, removing processes or
clearing all processes. A process may even remove
itself.

Interrupts can be added at various places within
the scheme to yield the system after a step, fragment
or even full round of processes.

It is possible to allow more than one fragment to
execute during each process stay. Adding a reduce

stack that contains a sequence of :$ elements followed
by :! and consulting this stack after each fragment
would issue a break only after a certain number of
fragments. Any process can prematurely yield by
placing an artificial :! on top or extend its stay by
adding :$. This fine grained control allows a pro-
cess to execute a number of fragments atomically.
The scheme to reset this reduction stack can use a
reverse-swap with a null element to clear any remain-
ing contents.

Handling inter-process communication becomes
simpler than most models since each fragment can
be arbitrarily long but will act atomically.

Asynchronous messaging between processes can be
achieved if a new per-process stack is added to model
a message queue. The swapping mechanism must
then move this along with eval. This relies on the
swap reversing the order. Messages arrive when the
queue is attached to the process but are received
when it is brought into context. These two events
will occur when the queue is facing in opposite direc-
tions enabling FIFO messaging.

15 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



5 Action Definitions

Until now very little has been said about defining ac-

tions although the details of the four instructions of
the register machine have been explained. That is it-
self enough to develop the actions from the examples
of the last section, however, each definition would
have been long and demonstrated little. Even with
the tools of this section the definitions would have
been very repetitive. The notation and construc-
tions used here mimic general programming tech-
niques building everything from smaller units of com-
mon functionality. The method used is that of defin-
ing a series of macros which themselves can be com-
posed of other macros. Then an action can be formed
by expanding all these macros recursively yielding a
rather unreadable but correct sequence of the four
available instructions.
An action declaration gives rise to a set of registers

from the element to which @ is being applied and
another set from the resulting element. There is no
reason to distinguish between them within an action

and they are all referred to as arguments. In technical
terms an action uses the call by name convention.
The registers of the resulting element will all be in
their special state 0. Each register has a size that
reflects the number of states the register can be in
or alternatively how many times it must be advanced
before it returns to its current state. Another concept
of the register machine is a label that can refer to a
specific instruction. These are written using a name
prefixed by @. Thinking of each line of the expanded
definition as either one of the four core instructions
or a label is useful.
Often some form or temporary storage is required

during the processing of an action. As described ear-
lier a persistent register can be declared for this pur-
pose. For convenience its beneficial to associate this
persistent register with the action. Since it is directly
associated it is said to be local to the action. This
can be done by writing after an action declaration a
list of registers enclosed in square brackets:

[t:value, done:boolean]

It’s important to be clear that this is not a new
concept. These local registers are still persistent reg-

isters and semantically accessible from all actions,
however, they are syntactically inaccessible. This
prevents problems with name clashing. They are not
really temporary since persistent registers hold their
state between applications.
Where a common sequence of instructions is to be

reused they can be declared as the body of a macro
enclosed in curly braces. Each macro has a name and
zero or more arguments each of which in effect uses
the call by name convention. These arguments will
take one of three types: register, label or parameter.
A register type is either an action argument, a per-
sistent register (local registers naturally included) or
a macro argument of register type. In short anything
that is a register. It is written as just a name. A
label type is either a label declared in the current in-
struction sequence (possibly after the point of use)
or a macro argument of label type. It is written as a
name prefixed by @. A parameter is a natural num-
ber that can be used as argument to a macro and
subsequently passed to other macros. It is written as
a name prefixed by # and instances are the numbers
themselves.
When a macro is to be used its name is written

followed by the instances to bind to the arguments
separated by commas. The types must match oth-
erwise the macro expansion is malformed. A macro
may also have local storage and uses the same nota-
tion as for an action. It is extended slightly to allow
the register type to be the same as one of its register
arguments. This is indicated by writing ~x where x

is an argument of register type. When a macro is
expanded a fresh version of each local register is de-
clared. Any labels that appear in the body of the
macro are created for each expansion and although
share the same name are in different and inaccessible
scopes.
The final piece of notation allows for a sequence

of instructions, labels or macro expansions to be re-
peated. A parameter enclosed by parentheses is fol-
lowed by a body enclosed in curly braces. For in-
stance to advance a register r three times:

(3)

{

r’ -> r

16 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



}

Everything becomes more clear with plenty of ex-
amples. Considering registers as natural numbers
modulo their size motivates:

inc( r )

{

r’ -> r

}

To test if a register is in state 0 and go to one label
if true or another if false.

tst( r, @zero, @nonzero )

{

r=0 ? zero : nonzero

}

To unconditionally start processing at another la-
bel:

jmp( @label )

[ r:tag ]

{

r=0 ? label : label

}

The register r will permanently be in state 0 of
which there will be one copy for each expansion of
the macro.
Simple conditional tests for 0:

ifz( r, @label )

{

r=0 ? label : next

@next

}

ifnz( r, @label )

{

r=0 ? next : label

@next

}

This is legal since expansion is syntactic. The label
will either associate with the next register machine
instruction or be at the end of the definition. Where

multiple labels associate with the same instruction
they are interpreted to be identical.
To clear a register namely putting it in state 0:

clr( x )

{

@loop

inc x

ifnz x, loop

}

In contrast to traditional register machines that re-
quire a decrement style instruction this can be built.
It essentially adds |x| − 1 ≥ 0 to x:

dec( x )

[ t:~x ]

{

clr t

inc t

@loop

inc x

inc t

ifnz t, loop

}

To transfer state between registers is more compli-
cated as an intermediate register is required. When
expressing this as a macro the intermediate register
is local and takes the same size as one of the argu-
ments. It’s imperative not to make it the same size as
the wrong one though since where the argument sizes
differ modulo assignment is expected. Comments are
added for clarity.

mov( x, y )

[ temp:~y ]

{

@loop1

inc temp /starts+ends 0

dec y

ifnz y, loop1 /temp=y, y=0

clr x /x=0

@loop2

ifz t, done

17 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



inc x

inc y /restore y

dec temp

jmp loop2

@done

}

The following examples build part of normal arith-
metic and are largely self-descriptive:

add( x, y )

[ t:~y ]

{

mov t, y

@loop

ifz t, done

inc x

dec t

jmp loop

@done

}

sub( x, y )

[ t:~y ]

{

mov t, y

@loop

ifz t, done

dec x

dec t

jmp loop

@done

}

One final example makes use of parameters. It is so
far possible to set a register to state 0 but not say its
n’th one. This amounts to setting a register to state 0
and then having n copies of the advance instruction.
The following macro achieves this neatly:

set( x, #n )

{

clr x

(n)

{

inc x

}

}

Hopefully it is now possible to believe that the ac-

tions used in the examples can be realised. Multipli-
cation, division and finding a remainder can be built
from addition and subtraction. Using the condition-
als ifz and ifnz allows for selection.

References

[1] “Towards A Universal Model Of Computing”, Pe-
ter Seymour, 2008.

[2] “The Breathe System”, Peter Seymour, 2008.

[3] “A Compendium Of Devices”, P. Seymour, 2008.

[4] “On Computable Numbers, with an applica-
tion to the Entscheidungsproblem”, A.M. Turing,
1936.

[5] “Whirlwind I Computer Block Diagrams”, R.R
Everett and F.E Swain, MIT Servomechanisms
Laboratory, 1947.

[6] “Z80 Pocketbook”, J.B. Vonk, Glentop, 1986.

[7] “Concurrent Programming in ERLANG”, Joe
Armstrong, Robert Virding, Claes Wilkstrõm and
Mike Williams, Ericsson, 1996,

18 Copyright c© 2008 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.


